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ABSTRACT

A new learning algorithm termed Cascade Error Projection (CEP) which provides efficient learning in
hardware is presented. This algorithm is adapted a constructive architecture from cascade correlation and
the dynamical stepsize of AID conversion from the cascade back propagation algorithm. The CEP technique is
faster t0 execute, because part of the weights are deterministically obtained, and the learning of the remaining
weights from the inputs to the hidden unit is performed as a single-layer perceptron learning with previously
determined weights kept frozen. In addition, one can start out with zero weight values (rather than random
finite weight values) when the learning of each layer is commenced. Further, unlike cascade correlation
algorithm (where a pool of candidate hidden units is added), only a single hidden unit is added at a time.
Therefore, the sSimplicity in hardware implementation is also achieved. Insimulation, a fixed 100 epoch
iterations is used for each single-layer perception (each single hidden unit) learning. The highlight of this
algorithmis thar with round-off method, 5-te 8-bit parity problems can be solved with a limited synaptic
resolution of only 3- to 4-hit, and the same problem with truncation technique would be solved with 5-bit or
nwre synaptic resolution.

J. Introduction In this paper, a ncw efficient cascade error
projection (CEP) learning algorithm is presented.
There are many ill-defined problemsin ltoffersa
pattern recognition, classification, vision, and Curment hicklen i Outont uits

speech recognition which need to be solved in real

time [1-4]. These problems are too complex to be Calculated wei msix
solved by a linear technique; the most suitable Previous hidden unit

approach would be a non-linear technique, such as . } :D hi: ﬂ
aneura net work. Error Backpropagation (EBP)[5) Leamed wights, frozen L"
learning algorithm is a popular supervised learning \

technique. Onc of the most attractive features of Bias 'D
the ncural network is a massively parallel L
processing that offers tremendous speed only when I 3
implemented in hardware.  From the hardware A ry
point of view, EBP requires at least 12-bit weight
resolution to learn a non-linear simple problem[6]
showing that this learning algorithm is very
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lLearned weight blo-:l:-J l Calculated weights, frozen

expensive for hard ware implementation, However, 1"!'8;,” L ﬂé‘e éfd'““‘r;‘_';d of C*_itscadcd error
H : projeciion INCIUAES inputs, NiAAeN units, ana outpu
there_arc other |earni ng algomhms that arc more units. The shaded circles or squares indicate the
practical than others [7]. There have been afcw learned or calculated weight set which are compuited
attempts to adapt such algorithms to hardware. aﬂlfiedfmm\-b A cirrc]k i"diclaws that leaming is
: : applied to obtain the weightset using perceptron
Wel ght . pcrlurbatlon[S], casc_ade learning, and a square indicates that tbe weight set is
correlat ion(CC)[9], and cascade backpropagat ion detenminigticatty calculated.

(CBP)[10] approaches has been investigated and
reported in literature,




fast, reliable, and hardware implementable [earning

method using a one-layer perceptron approach and
adeterministic calculation for the other layer.
This procedure offers a fast, reliable, and hardware
implementable |earning algorithm [11]. To
validate the ncw learning algorithm of CEP,
simulations of problems from 5- to 8-bit parity
were investigated with weight quantization based
on a floating point machine (32-bit for fioat and
64-bit for double precision) as well as limited
weight quantizations based on  hard ware
implementat ion (3- to 6-bit weight resolution)
using two A/D conversion techniques (round-off
and truncation).

In genera, the network architecture is
shown in Figure 1. Shaded sgquares and circles
indicate frozen weights, a squarc indicates
calculated weights, and a circle indicates lcarned
weights.

2. Cascade Error Projection Learning
Algorithm

The motivation to usc the CEP technique is
supported by three reasons:

a) It has faster learning by dividing the network
into two sub-nctworks:

i) Stochastic learning network.
ii) Deterministic calculation network.

b) It is efficient even with limited weight
resolution hence easier to implement in
hard ware.

¢) The analysis guarantees its learning capability
both in continuous and in discrete weight
space(11].

2.1 Mathematical approach:

The energy function is defined as:

P m
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The weight updating between the inputs (including
previously added hidden units) and the newly
added hidden unit is calculated as follows:

JE(n+1)

AwhL(n+1)=~
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and the weight updating between hidden unit n +1
and the output unit o is
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with f(x)=226_ (®)
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The used notations arc defined as follows:
nt is the number of outputs, P is the number of
training patterns.

Error €2 =12 — o (n); where of (n) is the output
clement o of actual output o(n) for training pattern
p and 1! isthe target clement o for training

pattern p. n indicates number of previously added
hidden units.

y:(n) = ¢ denotes the output transfer function
derivative with respect to its input.

ff (n+ 1) denotes the transfer function of hidden
unit n+7.

3. Simulation

3.1 Cascade Error Projection Learning
Algorithm Procedure

1. Start with the network which has
input and output neurons.  With the
given input and output patterns and
hyperbolic transfer function, one can
determine the set of weights between
input and output by using pseudo-
inverse or perceptron learning.  The
weight set W,, is thus obtained and

frozen.

2. Add a new hidden unit with a zero
weight set for each unit. In each loop
(contains an epoch) an input-output
patternis picked up randomly in the
epoch (no pattern repeated until every
pattern in the epoch is picked). Use the
perceptron learning technique of
equation (a) 10 train W (n+1) for 100
epoch iterations.

3. stop the perceptron  training.
Calculate the weights W,,(n+ 1)

between the current hidden unit and the
output units from equation (b).

4, Cross-validate the network. If the
criteria is satisfied, then stop training,
and rest the network. Otherwise, go to
step 2 above until the number of hidden
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units ismore than 20; then give up and ) Y Awj,
quit! stepsize(n) ml(—;lm)
3.2 Problems ; (_th_.f{t) int Aw h(n) )
stepsize(n) stepsize(n)
From 5- to 8-bit parity problems arc solved in <2F

. >
this paper. The input and output highs arc 0.8, and ijh (n)>0

and the lows arc -0.8. This simulation is

conducted (1) with no limited weight . Aw, ()
quantization (32-bit for floating point or 64-bit Awj, (n):= {stepsize(n) * int(- —L——)
for double precision); and, (2) the limited weight stepsize(n)
quantization from 3 to 6 bits using round-off and . Wi ()  Aw ()

: : et
truncation techniques. | (s epsizeon) IW%—-S epsize(n)))
3.3 Parameters <-2° and ijh(") <0

The learning rate m is decreased linearly at each
epoch as follows:;

nnewznoldw'()] *no "
No= 0.4 for 7- to 8-bit parity with no

limited weight quantization, and no = 1.0 for

others.

0 Otherwise

3.5 simulation results

3.4 Conversion techniques i . ) )
Figure 2 refers to simulation results with round-off
The updating weight Aw is converted into the technique., Even with 3-bit weight resolution the

available weight quantization which is Aw*. network is able to leam 5- to 7-hit parity problems
The conversion can be summarized as follows: with no error within the. 20 hidden units limit. For

cepsi =Bt -1 with B constant We_ight quantization of 4-bit or more, the netwprk
stepsize(n) =pP(n - 1) b reliably demonstrates the capability of learning

from 5- to 8-bit parit y problems.
* Round-off techniaue: panty’p

“in(—it__y 05) i B o-bit PAR
stepsize(n) * inf(————+ 0. 18 -bit
psize(n) stepsize(n) O 7-bit PAR
) A ( ) 16 E18-bit PAR
w(n . W (N
(—2—_y int(—2"_+ 05)) N#of '
stepsize(n) stepsize(n) hidden 12
<2 and  Aw,(n)>O units .
6
Aw ., (n) 4
AW, (n) = | stepsize(n) * int(——2 0.5) 2
stepsize(n) ol B EREE FEEHE FEER [P
I wis () b Aw, () 05)) 3 3 5- 6- 64
i .
stepsize(n) stepsize(n) bW bW bW bW bW
N #of bit resolution synapse
<-2° and  Aw;, (nN)<O ynap
0 Otherwise Figure 2: The chart shows CEP learning capability
for 5- to S-bit parity problems using round-off
technique. X axis represents limited weight

quantization (3-6 and 64-bit) and y axis shows the
resulting number of hidden units (limited to 20).

* Truncation technique Fach hidden unit has 100 epoch iterations. As
shown, the lager number of hidden units compensate
for the lower weight resolution.
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JFigure 3: The chant shows CEP |earning capability
for 5- to 8-hit panty problems using truncation
technique. X axis represents limited weight
quantization (3-6 and 64-bit) and y axis shows the
resulting number of hidden units (limited to 20).
Each bidden unit has 100 epoch iterations. As
shown, the lager number of hidden units compensate
for the lower weight resolution.

Figure 3 shows similar results for the truncation
technique. Here 3- and 4-bit weight quantizations
do not have the capability to learn 5-bit or higher
parity problems.  However, with higher bit
resolution the learning with truncation technique
shows the learning capability; even though, it is
not as consistent as that with the round-off
technique.

4. Conclusions

in this paper, wc have shown that CEP is

an cfficient algorithm for hardware-based learning.
Its advantages can be summarized as follows:
. A fadt, reliable learning technique
. Easy to implement in hardware
. Tolerant of limited synaptic weight resolution

The round-off technique is belter compared
with truncation as shown by our analysis
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